GCE Advanced Level

MARK SCHEME for the November 2005 question paper

9700 BIOLOGY

9700/06

Paper 6 (Options), maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	e 1	Mark Scheme GCE A LEVEL – OCTOBER/NOVEMBER 2005	Syllabus 9700	Paper 6	-
		OPTION 1 – MAMMALIAN PHYSIOLOGY	,		-
(a)	May	need revising in light of the micrograph obtained			
	А	matrix / lamella			
	В	blood vessel / (Haversian) canal			
	С	osteocyte / lacuna			
	D	Haversian system			
	One	mark for two correct, round up ;;			2
(b)	outsi	ide of shaft / ends / at joint / AW ;			1
(c) (i)	(cart	ilage) no calcium (phosphate) in matrix;			
	no bl	lood vessels;			
	has o	chondrocytes / does not have osteocytes;			2 max
(ii)	cartil	lage is very smooth ;			
	redu	ces friction ;			
	cartil	lage protects bone surface ;			
	prev	ents it wearing away / prevents roughening ;			2 max
(d) (i)	as a	control / to reduce variables ;			1
(ii)	bone	e strength is reduced (when ovaries are removed);			
	Use	of figures, e.g. drops by 25% in femur / by 17% in	vertebra ;		2
(iii)	ovari	ies produce oestrogen / no ovaries so no oestroge	n ;		
	num	bers of osteoblasts compared to osteoclasts decre	ases ;		
		ove e.g. as figs incorrect and alternatives poss. for oclasts	osteoblasts	v	
		of figures, e.g. osteoblasts 4 x without ovaries and ly 7 times with ovaries;	osteoclasts		2 max
(iv)	both	increase bone strength;			
		neither return it to normal (after ovaries removed) / pletely compensates for loss of ovaries;	neither		
	there	e is a greater increase with estren than with oestro	gen ;		
	use	of comparative figures ;			3 max

	Pa	ige 2	Mark Scheme	Syllabus	Paper]
			GCE A LEVEL – OCTOBER/NOVEMBER 2005	9700	6]
2	(a) (i)	{dit	122 16 fference is 138 – 123 = 15			
		so	11.6% percentage difference is 16 ÷ 138 x 100 = 10.9%}			
		cor	rect and understandable working ;			
		ans	swer;			2
	(ii)	glu	cose does not need digestion but starch does ;			
		SO	glucose is more quickly absorbed ;			
		-	cose absorption from starch continues over a longer cose ;	r period than		2 max
	(b)	ins	ulin secreted when blood glucose rises above norma	al;		
			ulin concentration follows pattern of changes in bloo ncentration ;	d glucose		
			ore insulin secreted after 30 minutes (for glucose that ore glucose in blood at that time ;	n rice) beca	use	
		as	blood glucose falls insulin secretion falls ;			
		ref	erence to negative feedback mechanism ;			
		use	e of comparative figures ;			3 max
	(c)	ins	ulin binds to receptors on cell surface membranes (of liver cells)	;	
		inc	reases absorption of glucose (by liver cells);			
		(sti	mulates) conversion of glucose to glycogen ;			
		gly	cogen stored in liver cells ;			3 max

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – OCTOBER/NOVEMBER 2005	9700	6
	GCE A LEVEL - OCTOBER/NOVEMBER 2005	9700	6

3 (a) control of body temperature ;

receptors (in hypothalamus) measure blood temperature ; if too high stimulates neurones of autonomic nervous system ; controls secretions from pituitary gland; neurones (of hypothalamus) secrete, ADH / oxytocin ; released from (neurone endings in) posterior pituitary ; neurones (of hypothalamus) secrete, releasing hormones / named releasing hormone (into blood); which affect secretions from anterior pituitary ; 3 max 1 (b) (i) cerebrum / cerebral hemisphere / occipital lobe ; (ii) ref generator potential; as action potentials in neurones; detail of action potential; in optic nerve; different pathways (in the brain) / parallel processing; correct detail about how different information transmitted (e.g. colour, shape, movement) ;; 3 max (a) ethanol dehydrogenase ; ethanoate / acetate ; 2 (b) mitochondrion ; 1 (c) Krebs cycle requires oxidised NAD ; to pick up hydrogen ; as a coenzyme for dehydrogenases ; 2 max (d) fatty acids not oxidised ; as little (oxidised) NAD available ; fatty acids converted to fats ; stored in liver cells ; surplus fat converted to LDPs ; passed from liver into blood to adipose tissue ; if liver cells damaged excess fat not converted to LDPs ; therefore accumulates in liver ; 3 max

Page		Mark Sc GCE A LEVEL – OCTOB		Syllabus	Paper 6
				9700	6
	OP	PTION 2 – MICROBIOI	OGY AND BIOTECHN	IOLOGY	
(a) (i)	air adde	ed must be sterile / ferm	nenter must be sealed /	add airlock ;	
	avoids c	contamination by other	microorganisms / conta	mination cos	tly ;
	cooling j	jacket needed / heater	not needed ;		
	mixer / r	respiration, produces h	eat ;		
	surface	area : volume ratio les	s so less heat lost ;		
	immobili	ised microbes ;			
	reduces	loss of microbes / red	uces contamination ;		
	change	to continuous culture ;			
	maintair	ns microbe at, exponen	itial / optimum, growth ;		
	(greater	production) more cost	effective ;		
	•	e.g. sparger ; small bul s in contact with O ₂)	bbles forced through cu	lture so all	
			each alteration 1 + ex	xplanation ma	ax 1
(ii)	Ph / tem	nperature ;			
	ref. enzy	yme denaturation ;			
	oxygen	concentration / nutrien	t / substrate concentrati	on ;	
	ref. micr	robe respiration ;			
	end proc	duct concentration ;			
	ref. inhib	bition ;			
			factor	1, explanatio	n 1.
(b) (i)	$\frac{27+32}{3}$	+ 28 = 29			
(ii)	29 x 10 ⁷	7	wor	king 1, answe	er 1
(iii)	10 ⁻⁵ colo	few colonies to be relia onies may overlap / 10 many colonies to cour	⁻⁶ colonies clearly separ	rated ;	
(c)	•	/ haemocytometry ; Ils are included in mea	surement ;		
(d)	rapid inc	low increase from point crease (exponential ph (stationary phase) ;			
	decreas	ing number (death pha	ise) ;		
					[To

Page 5	Mark Scheme	;	Syllabus	Paper	
	GCE A LEVEL – OCTOBER/N	OVEMBER 2005	9700	6	
	ble to survive at high temperatures				
	nzymes with high optimum temper emperatures ;	atures / do not den	ature at high		max 1
b) h	as a high optimum temperature / c	optimum temperatur	e of 85-90°C	;	
W	orks well at pH range of 6-8 ;				
C	ooling of reaction mixture after first	t stage unnecessar	y;		
re	eduction of pH unnecessary ;				
S	aves time / energy ;				max 2
c) e	nzymes can be recovered and use	ed again ;			
р	roduct will not be contaminated by	enzyme ;			
е	nzyme more stable to temperature	e and pH changes ;			
е	nzyme activity more easily controll	led ;			max 2
d) <u>b</u>	atch	<u>continuous</u>			
fi	losed fermenter xed amount of substrate utrients added at start	open fermenter ; substrate added c	ontinuously ;		
la p o	rge vessels used roduct harvested after set period f time / when sufficient product as been made	small vessels used product harvested	,	,	
le c	ulture harvested when in tationary phase	more cost-effective culture kept in exp ;		se	max 3

	age 6	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – OCTOBER/NOVEMBER 2005	9700	6
(a)	А	conidium / conidiospore ;		
(a)	В	conidiophore ;		
	c	septum / cross wall ;		
	D	hyphal wall ;		
(b)		h off conidia / any other feasible method ;		
(D)		-	ina :	
		aseptic conditions, ref. to sterile water, loops, flam	iing ,	
		culation by loop or spreader ;		
	•	ead 0.1 / 0.5 cm ³ ;		
		ient medium containing cadmium ;		
		to range of cadmium concentrations ;		
		bation conditions ;		
	isola	ate spores / conidia from any colonies that grow ;		
(c)	che	ck with Fig. 3.1 that they are Aspergillus ;		
		act metals from low grade ores / treat raw ore befo cessing / idea of microbial mining ;	ore final	
	deto	oxifying wastes ;		
	use	to accumulate precious metals ;		
				[To
(a)	incre	eases ;		
	use	of figures / figure calculated from data ;		
(b)	ref.	vector / plasmid / viral, <u>DNA</u> ;		
	ref.	Agrobacterium		
		er method of getting the gene into cells e.g. project	iles /	
		troporation ; ept refs to role of calcium ions / protoplast ;		
(c) (i)	X –	so that you know it is the Bt toxin / AW having the	effect ;	
		so you know that the X hybrid is growing normally		
(ii)		otton reduces the amount of insecticide used ;		
()		cotton almost doubles / dramatically increases / Av	v. the vield / c	ost
	5.0	-	., ,, 0	
		ctiveness ; oxin / AW is only found in the cells not in the sap ;		

[Page 7		Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – OCTOBER/NOVEMBER 2005	9700	6	
		OF	PTION 3 – GROWTH, DEVELOPMENT AND REPR	ODUCTION		
(a	i)	<u>trar</u>	nscription:			
		onl	y when gene switched on ;			
		mo	re RNA = gene, on longer/more active/used more ;			
		ref.	promoter/AW ;			max 3
(b) (i)	acti	ivity/mRNA, rises in light and falls in dark in both reg	jimes ;		
		ma	ximum, activity/mRNA, at end of light period in both	•		
		dec	creases in dark in both ;			
		mu	ch more, activity/mRNA, in 16h light ;			
		hig	her production at, 8/12/15h, in 16h light ;			
		con	nparative figures ;			max 4
	(ii)	lon	g day plant ;			
		mo	re FT mRNA in longer light ;			2
	(ii)	phy	/tochrome ;			
			eaves ; forms/P _R and P _{FR} /P ₆₆₀ and P ₇₃₀ ;			
			P ₆₆₀ , absorbs, red/660nm, light and P _{FR} /P ₇₃₀ , absorb /730nm, light ;	s, far		
		abs	corption of light by one form converts it into the other	- ; ;		
		P_{FR}	/P ₇₃₀ builds up during daylight ;			
		P_{FR}	/P ₇₃₀ , converted into P _R /P ₆₆₀ at night ;			max 4
	(ii)	day	rlength more reliable trigger than temperature/humic	lity ;		
		ens	sures plants flower at same time for cross pollination	;		
		ens	sures plants flower when pollinators available ;			
		ens	sures seeds, produced/dispersed, in optimum condit	ions ;		max 2
					[Tot	tal: 15]

		Page	8	Mark Scheme	Syllabus	Paper	7
				GCE A LEVEL – OCTOBER/NOVEMBER 2005	9700	6	
2	(a	a) (i)	spe	erm trains faster than single sperm ;			
			at a	all viscosities ;			
			sin	gle sperm cannot swim at highest viscosity ;			
			ref	. comparative figures ;			max 2
		(ii)	spe	erm reach egg faster ;			
			spe	erm able to swim through viscous mucus/AW ;			
			ref	. cervical mucus ;			
			ref	. sperm competition ;			max 3
	(ł	o) (i)	acr	osome swells ;			
			acr	osome membrane fuses with plasma membrane ;			
			rele	ease of acrosome enzymes ;			
			dig	estive/hyaluronidase/esterase ;			
			dig	est path through, follicle cells/zona ;			max 3
		(ii)	acr	osome enzymes digest cell-cell molecules/AW ;			
			acr	osome reaction destroys hooks ;			
			ref	. figures ;			max 1
		(iii)	sor	ne sperm must be able to fertilise ;			
			spe	erm with no acrosome cannot fertilise ;			1
						[Tot	al: 10]

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – OCTOBER/NOVEMBER 2005	9700	6

3	(a)	flexible filament ;	
		anther hangs outside flower ;	
		anther versatile / AW ;	
		produce light pollen grains ;	
		pollen, smooth/dry/aerodynamic ;	max 3
	(b) (i)	peaks at 1100 on both days ;	
		comparative figures (44,8) ;	
		(many) more on day 1 at all times ;	
		lowest 1700 both days ;	
		falls to 0 1700 day 2 ;	max 3
	(ii)	62 flies v. 8 flies	
		62 – 8 = 54;	
		54/62 x 100 ;	
		= 87%	max 2
			[Total: 8]
4	(a) (i)	time/energy, not wasted seeking mate ;	
		no wastage of gametes ;	
		rapid production of large numbers of offspring ;	
		offspring of well-adapted parent also well adapted ;	
		(if in wild) effective, dispersal/spread/colonisation ;	max 2
	(ii)	no <u>genetic</u> variation ;	
		other than by mutation ;	
		which is rare ;	
		no ability to adapt to changed environment ;	
		no ability to adapt to 'new' pathogen ;	max 3
	(iii)	one released animal could found a population ;	
		rapid colonisation ;	
		outcompete native species ;	
		affect food chain ;	
		AVP ;;	max 2
			[Total: 7]

-	Paper 6	Syllabus 9700	age 10 Mark Scheme GCE A LEVEL – OCTOBER/NOVEMBER 2005	Ρ
]	0			
		.5	OPTION 4 – APPLICATIONS OF GENE	,
			initiate heart beat ;	a)
			no external nervous stimulation / myogenic ;	
			control, heart rate / rhythm ;	
			detail of wave of excitation ;	
			ref. autonomic nervous system / adrenaline ;	
			altering natural genotype ;	b) (i)
			to treat (genetic) disease ;	
			by repairing defective gene ;	
			by replacing defective gene ;	
			by adding normal gene, leaving defective in place;	
max			ref. germ cell/somatic cell therapy ;	
			i) protein/channel different, shape/3° structure ;	(i
		ferent ;	no longer accepts ion/ion no longer fits/receptor site	
max			no longer binds ATP ;	
		n potentials ;	normal cells show no activity / treated cells show ac	c) (i]
			resting potential of –75 mV ;	
		ential of –60	treated cells have, smaller resting potential/resting mV/no stable RP ;	
			+38/39/40 mV ;	
max			regular / repeated 550/560 ms ;	
		ive/stable,	 functioning ion channels in normal cells gives, v. ne resting potential ; 	(i
			channels in treated cells inactive ;	
			cannot transport potassium ions ;	
			less negative/unstable, resting potential;	
max			threshold to fire can be reached ;	
		aced in right	atrium/ventricle/heart, cells treated in vitro (AW) and atrium ;	(i
max			cells of right atrium treated in vivo (AW);	
al: 15	[Tot			

	Page 1	1	Mark Scheme		Syllabus	Paper
			GCE A LEVEL – OCTOBER/NOVEMBER 2005	5	9700	6
(a		•	rolyse / break down, Ach/transmitter, to allow fu oss synapse ;	urther t	ransmissi	on
(b) (i) r	resi	stant Ach-ase slight affected v. susceptible stro	ngly a	ffected/ A	W ;
			stant drop from 95% to 75% activity/9.5-7.5 au/s ⁄6 to 2%/9-0.2 au ;	susce	otible from	ו
	r	ref.	effect higher concentrations on susceptible ;			
	r	ref.	to specific concs. of propoxins in dm^{-3} ;			
	(ii)	<u>8.5</u> 8	<u>−1.5</u> ×100 ;			
	=	= 82	2.35 / 82.4 (%) ;			
(c) r	mut	ation ;			
	(cha	nce / random / pre-existing / spontaneous ;			
	ę	sub	stitution ;			
	C	cha	nge in a-acid alters shape of active site;			
	C	can	not be blocked by Propoxur ;			
	S	sele	ective advantage/natural selection ;			
	F	Prop	poxur selective agent ;			
	r	resi	stants survive longer and pass allele to offspring	g ;		ma
						[Total:

Pa	ge 12	Mark Scheme Syllabus						Paper]
		GC	E A LEVEL	– OCTOBE	R/NOVEMB	ER 2005	9700	6]
(-) (i)	10		acac box						
(a) (i)		to act as a, gene bank/genetic resource ;							
	of	of traits for future selective breeding ;							
	in o	in changed climate/in case of new pathogen ;							
	in o	in counteract, inbreeding/loss genetic diversity;							
	kno	known but presently unfashionable traits / unknown traits ;							ma
(ii)	spe	sperm checked for, abnormalities/motility/genetic disease ;							
	ma	may be sexed / X and Y sperm separated ;							
	dilu	diluted, with extender medium/albumin/citrate buffer ;							
	fro	frozen, in liquid nitrogen / at –196° C ;							
		in 'straws'/long thin tubes ;							ma
(b)									
		different sires used ;							
	•	progeny testing to establish best sires ;							
	sire	sire chosen to, maintain genetic diversity/minimise inbreeding;							
	spe	sperm sexed to guarantee sex of offspring ;							
	AV	AVP ;							ma
								[To	otal
(a) (i)	ide	idea of interaction of, genes / loci ;							
	ide	idea effect from dominant allele / recessive allele inactive ;							
(ii)	Aa	AaBb white (flowers/petals) and Aabb yellow (flowers/petals);							
(b)	pa	<i>parents</i> AaBb x aabb and both white ;							
	•	gametes AB Ab ab x ab ;							
	•	offspring genotypes and phenotypes ;							
	rat	ratio 3 white ; 1 yellow ;							
	ga	metes ab	AB AaBb	Ab Aabb	aB aaBb	ab aabb			
		ab	white	yellow	white	white			